Du är här:Hem Bloggar Båtfeber Batterirevolution när bly byts mot litium – långtidstest

Batterirevolution när bly byts mot litium – långtidstest

bmv 700 socViktbesparingar på 90 kg, mindre underhåll och större effekt. Men är det värt investeringen? Här redogör Jimmy Hellberg sina resultat efter att ha bytt från bly till litium.

Det gamla hederliga blysyrabatteriet sitter fortfarande i var mans bil. Det uppfanns redan 1859 av den franska fysikern Gaston Planté och är den äldsta typen av alla uppladdningsbara batterier. En fantastisk uppfinning som det funnits få bra alternativ till. Tills nu.

Jag går nu in på fjärde säsongen med litiumbatterier i båten och det funkar fantastiskt bra, klart bättre än alla tänkbara typer av blysyrabatterier.

Ni ska snart får reda på skillnaderna men först vill jag redogöra för de i båtar mest frekvent använda typerna av blysyrabatterier och hur de fungerar.

Blysyrabatteriernas egenskaper

De vanligast förekommande versionerna av blysyrabatterier är våta, gel och AGM.

I min tidigare båt, en Mamba 311, så hade jag Lifeline AGM-batterier. AGM står för Absorbed Glass Mat och innebär att batterisyran är bunden i en slags glasfibermatta, vilket bland annat gör dem mindre känsliga för stötar och krängning.

Fabrikatet ”Lifeline” var det många av båtarna i Volvo Ocean Race 2008-2009 som använde just för att de anses vara bland de absolut bästa blysyrabatterierna man kan köpa för pengar. De klarar uppåt 1 000 cykler (urladdning/uppladdning) vid 50 procents urladdning, vilket är två till tre gånger fler än de normalt förekommande blysyrabatteierna som man hittar i handeln.

Som med så mycket annat så får man vad man betalar för. I Mamban installerade jag två stycken 105Ah Lifelinebatterier för cirka 8 000 kr. De fungerade riktigt bra och gör så fortfarande enligt rapporter från den nya ägaren. De går nu in på sin nionde säsong.

Livsviktigt att underhålla bly

Förutsättningen för att blysyrabatterier ska fortsätta att leverera bra kapacitet är att ägaren underhåller dem pedantiskt. Att lämna dem halvladdade i några veckor förkortar livslängden drastiskt. Detta beror på att ett blysyrabatteri som inte är fulladdat ”sulfaterar”, typ rostar, invärtes. Detta är det absolut största problemet med blysyrabatterier i båtar och andra säsongsfordon. Man måste därför se till att ladda dem fullt så fort tillfälle ges.

Vidare så bör de absolut inte laddas ur mer än 50 procent och eftersom alla blysyrabatterier därtill har ganska hög självurladdning, upp till ca en procent per dag, så måste man också se till att ha någon typ av konstant underhållsladdning när båten inte används.

Skillnad på startbatteri och förbrukarbatteri

Ett blysyrabatteri med benämningen ”Deep Cycle” är konstruerat för att klara djupa urladdningar, ner till 80 procent av dess kapacitet. Dock är rekommendationen även för dessa att aldrig förbruka mer än 50 procent innan laddning då antalet cykler minskas avsevärt med ökad utnyttjadegrad.

Står det något med ”Start” eller ”SLI” på batteriet så är det konstruerat för att klara av att leverera många ampere under kort tid, vilket är vad som krävs för att starta en motor. Börjar man djupurladda ett sådant batteri så får man ut 30-150 cykler innan batteriet är förstört. Men använder man det bara till att starta motorn, vilket inte drar ur batteriet mer än ca 2-5 procent, så kan batteriet räcka till tusentals cykler.

Hybridbatterier

En slags hybrid är så kallade ”marinbatterier”. De är ofta en mix av ett start- och djupurladdningsbatteri. För att klara krängning och se till att elektrolyten inte rinner ut så är batteriet helt tätt, så när som på en ventil som släpper ut gasen som bildas om batteriet överladdas.

Den här typen av batterier är dock ofta känsliga för vibrationer, stötar och slag, som alla typer av våta batterier är, så egentligen är det inte helt optimalt att ha dem i motorbåtar. AGM-batterier är klart bättre i detta avseende.

Blysyrabatterier har alltså många svagheter och även om just AGM-typen både klarar fler cykler och är tåligare så är det fortfarande ett blysyrabatteri med allt vad det innebär. Ytterligare en uppenbar nackdel är att de innehåller bly, vilket gör dem väldigt tunga. Andra nackdelar är hög inre resistans, vilket gör att det tar lång tid att ladda dem fullt. I praktiken betyder detta att man normalt bara kan utnyttja ca 30-40 procent av blysyrabatteriets kapacitet i en båt på semestern.

Fem gånger fler cykler och dubbla kapaciteten

Litiumbatterier finns i många olika sammansättningar. Till exempel Li-ion, Li-Po, Li-Fe. De har funnits länge i bland annat telefoner och datorer.

Vissa typer är extremt kraftfulla men kräver speciell behandling avseende spänning, laddning med mera, vilket gör att det inte bara är att stoppa i dem i våra båtar för att ersätta befintligt blysyrabatteri.

Det finns dock två typer som fungerar, LiFePo4 och LiFeYPo4, vilket är förkortningar för lithium iron phosphate (jag förkortar dem LiFe i resten av artikeln). Dessa fungerar förvånansvärt bra som ersättningsbatteri för blysyrabatterier.

Dessa batterier har fyra celler, vardera med en nominell spänning på 3,2 Volt. Seriekopplar man fyra celler så får man alltså ett batteri med en nominell spänning på 12,8 Volt, vilket är mycket nära den nominella spänningen hos ett blysyrabatteri som består av sex stycken celler om vardera ca 2,14 volt. Alltså 12,84 volt totalt (ett laddat LiFe batteri ligger normalt aningen över 13V).

Laddning av litium

Olika LiFe-batterier kräver mer eller mindre avancerade metoder vid laddning. Jag valde LiFeYPo4 av fabrikat ”Winston” som är specifikt gjort för att kunna ersätta bilars startbatteri. Det består av fyra noggrant matchade celler som byggts ihop till ett 12V-batteri. Typen kallas ”LP”.

En annan typ, kallad ”LPF”, består av separata celler som kräver balansering sinsemellan av ett så kallat Battery Management System (BMS). Fördelen med den senare typen är att man får möjlighet till en något större utnyttjandegrad av batteriets kapacitet, men till en högre kostnad och komplexitet.

Ett LiFeYPo4 batteri klarar vid en utnyttjandegrad på 50 procent över 5 000 cykler, det har alltså en livslängd som är minst fem gånger längre än de allra bästa blysyrabatterierna av AGM-typ. Vid 80 procent utnyttjandegrad (vilket ungefär är vad man kan utnyttja i praktiken) så får man ut ca 2 000 cykler!

Som jag nämnt tidigare så måste man alltid se till att ha blysyrabatterier fulladdade för maximal livslängd. Detta gäller inte litiumbatterier. De mår faktiskt bäst när de är halvladdade, vilket rimmar mycket bättre med hur batterierna i våra båtar används.

Ett ytterligare plus med LiFe-batterier är att de i princip inte alls lider av självurladdning. Det betyder att man inte behöver underhållsladda dem under vinterhalvåret, bara koppla loss batteripolerna och gå i vinterdvala. De kan heller inte frysa sönder, vilket ett urladdat blysyrabatteri gör redan i cirka minus sju grader.

Snabbare att ladda

LiFe-batterier har låg inre resistans och tar därmed emot laddning mycket snabbt. LP-typen klarar konstant laddning på upp till 1C (90A laddström på ett 90Ah batteri) medan ett LPF batteri klarar 3C (angivna Ah x 3). 

Det går alltså att ladda upp LiFe-batterier extremt snabbt jämfört med blysyrabatterier som normalt klarar 0,1-0,25C. Ett blysyrabatteri på 90Ah kan bara ta emot någonstans mellan 9 till 23 Ampere i laddström, vilket innebär att en normalstor generator på 75Ah knappt utnyttjas alls. Detta innebär alltså att det krävs många motortimmar för att ladda upp ett blysyrabatteri.

LiFe-batterier klarar att leverera stora strömmar (oavsett temperatur). De är inte begränsade av den så kallade Peukerts Lag som blysyrabatterier är. Ett litet 40Ah LiFe-batteri kan momentant leverera över 1000A vilket motsvarar ca 13kW!

Även små LiFe-batterier klarar därför att starta stora dieselmotorer bättre än vanliga startbatterier (SLI) som är avsedda för uppgiften. De tål dessutom vibrationer och stötar och har inga problem att överleva i en snabb motorbåt. De kan också monteras i vilket läge som helst (gäller även AGM och Gel-batterier) då de inte har någon vätska som kan rinna ut.

Sparade 90 kg!
LiFe-batterier väger mindre än hälften av motsvarande blysyrabatteri. Som exempel väger ett 90Ah LiFe-batteri 15kg.

Omega 36 foreFöre. Såhär såg den gamla batteriinstallationen ut. Trångt, tungt och underhållskänsligt.

Lägger man dessutom med i ekvationen att man kan cykla batteriet dubbelt så djupt, så blir vikten lägre än en fjärdedel av jämförbart blysyrabatteri. Och räknar man därtill in att man kan ladda fyra till tio gånger snabbare, vilket också gör att man inte behöver så stor batteribank i buffert för att överleva semestern, så blir viktskillnaden ännu större.

Omega 36 efterEfter. Samma kapacitet och mindre underhållskrävande. Och otroligt mycket mindre och lättare. Batteri och övriga komponenter som behövdes för installationen gick på ca 9 000 kr.

Väger man in alla dessa fördelar så blir kontentan att ett 90Ah LiFe-batteri kan ersätta en batteribank på upp till 300Ah, plus startbatteri på 75Ah. 

Precis detta gjorde jag i min väns Omega 36 i början av denna säsong och den nya installationen blev 90 kg lättare. Därtill helt underhållsfri.

Tack vare litumbatteriets överlägsna livslängd var det sannolikt sista gången man behöver byta batteri i den båten.

Nackdelar med litium

LiFe-batterier är alltså överlägsna blysyrabatterier. Men det finns några nackdelar. Den mest kritiska är att de aldrig får laddas ur under 10 Volt (2,5V per cell), annars dör de för gott (ett blysyrabatteri som blivit helt urladdat går oftast att ladda upp igen även om det aldrig återfår sin ursprungliga kapacitet). Detta är dock enkelt att råda bot på med ett voltkänsligt relä som ser till att bryta strömmen, likt en huvudströmbrytare, om spänningen börjar bli kritiskt låg.

Det andra, som inte är alls lika förödande, är att man helst inte ska ha för hög ”floatspänning”, helst inte över 13,8V och ju lägre desto bättre. Floatspänning är den underhållsladdning som behövs för att hålla ett blysyrabatteri fulladdad då de (som jag beskriver tidigare i artikeln) har hög självurladdning. Ett Life-batteri har ju ingen självurladdning och behöver därför ingen floatspänning.

Kan vara skadligt med hög floatspännning
En konstant hög floatspänning är skadligt för ett Life-batteri. Man skall alltså helst ladda upp det till ca 14,0-14,6 volt och sedan avbryta laddningen helt. De flesta smarta laddare är ju anpassade för blysyrabatterier och är därför inte helt optimala för LiFe-batterier. Men ser man bara till att inte ha för hög floatspänning och inte ligga på landström med floatspänning i flera dygn så är det inget problem att ladda med en vanlig smart laddare för blysyrabatterier.

Man bör därför även se över hur en eventuell solcellsregulator laddar, och se till att även denna inte har för hög floatspänning.
Lämnar man båten en längre period gör man kanske bäst i att koppla bort solcellspanelen helt.

Att ladda ett redan fullt litiumbatteri är alltså något man ska vara försiktig med då detta förkortar livslängden. Detta gäller för övrigt även de litiumbatterier som bland annat finns i din dator och telefon. Att till exempel ladda telefonen hela natten, varje natt, kommer att förkorta livslängden på batteriet.

Mer om laddning av LiFePO4-batterier och hur installationen av lituimbatterier ser ut i min båt, samt vilka komponenter jag har använt mig av, tänkte jag gå in på i nästa artikel.

Publicerades: 2015-12-27

Text: Jimmy Hellberg

Skriv ut